Projected Block Coordinate Descent for sparse spike estimation.
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We consider the problem of recovering off-the-grid spikes from linear measurements. The state of the art Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with Projected Gradient Descent (PGD) successfully ...Lire la suite >
We consider the problem of recovering off-the-grid spikes from linear measurements. The state of the art Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with Projected Gradient Descent (PGD) successfully recovers those signals. In most cases, the main computational cost lies in a unique global descent on all parameters (positions and amplitudes). In this paper, we propose to improve this algorithm by accelerating this descent step. We introduce a new algorithm, based on Block Coordinate Descent, that takes advantages of the sparse structure of the problem. Based on qualitative theoretical results, this algorithm shows improvement in calculation times in realistic synthetic microscopy experiments.< Réduire
Mots clés en anglais
spike super-resolution
non-convex optimization
over-parametrization
block-coordinate descent
Project ANR
Régularisation performante de problèmes inverses en grande dimension pour le traitement de données - ANR-20-CE40-0001
Origine
Importé de halUnités de recherche