SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS
IOLLO, Angelo
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Voir plus >
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
IOLLO, Angelo
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
SAUT, Olivier
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Modélisation Mathématique pour l'Oncologie [MONC]
Langue
en
Article de revue
Ce document a été publié dans
Mathematical Models and Methods in Applied Sciences. 2012, vol. 22, n° 6
World Scientific Publishing
Résumé en anglais
A tumor growth model based on a parametric system of partial differential equations is considered. The system corresponds to a phenomenological description of a multi-species population evolution. A velocity field taking ...Lire la suite >
A tumor growth model based on a parametric system of partial differential equations is considered. The system corresponds to a phenomenological description of a multi-species population evolution. A velocity field taking into account the volume increase due to cellular division is introduced and the mechanical closure is provided by a Darcy-type law. The complexity of the biological phenomenon is taken into account through a set of parameters included in the model that need to be calibrated. To this end, a system identification method based on a low-dimensional representation of the solution space is introduced. We solve several idealized identification cases corresponding to typical situations where the information is scarce in time and in terms of observable fields. Finally, applications to actual clinical data are presented.< Réduire
Mots clés en anglais
Tumor growth modeling
data assimilation
inverse problems
Origine
Importé de halUnités de recherche