SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS
dc.contributor.author | COLIN, Thierry | |
hal.structure.identifier | Institut National de Recherche en Informatique et en Automatique [Inria] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation, contrôle et calcul [MC2] | |
dc.contributor.author | IOLLO, Angelo | |
dc.contributor.author | LOMBARDI, Damiano | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
hal.structure.identifier | Modélisation Mathématique pour l'Oncologie [MONC] | |
dc.contributor.author | SAUT, Olivier | |
dc.date.accessioned | 2024-04-04T02:29:52Z | |
dc.date.available | 2024-04-04T02:29:52Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0218-2025 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190216 | |
dc.description.abstractEn | A tumor growth model based on a parametric system of partial differential equations is considered. The system corresponds to a phenomenological description of a multi-species population evolution. A velocity field taking into account the volume increase due to cellular division is introduced and the mechanical closure is provided by a Darcy-type law. The complexity of the biological phenomenon is taken into account through a set of parameters included in the model that need to be calibrated. To this end, a system identification method based on a low-dimensional representation of the solution space is introduced. We solve several idealized identification cases corresponding to typical situations where the information is scarce in time and in terms of observable fields. Finally, applications to actual clinical data are presented. | |
dc.language.iso | en | |
dc.publisher | World Scientific Publishing | |
dc.subject.en | Tumor growth modeling | |
dc.subject.en | data assimilation | |
dc.subject.en | inverse problems | |
dc.title.en | SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1142/s0218202512500030 | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | Mathematical Models and Methods in Applied Sciences | |
bordeaux.volume | 22 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 6 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-04485448 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04485448v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Models%20and%20Methods%20in%20Applied%20Sciences&rft.date=2012&rft.volume=22&rft.issue=6&rft.eissn=0218-2025&rft.issn=0218-2025&rft.au=COLIN,%20Thierry&IOLLO,%20Angelo&LOMBARDI,%20Damiano&SAUT,%20Olivier&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |