The system will be going down for regular maintenance. Please save your work and logout.
Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
LARAT, Adam
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
LARAT, Adam
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Rapport
This item was published in
2010-03-17p. 60
English Abstract
In this paper we consider the very high order approximation of solutions of the Euler equations. We present a systematic generalization of the Residual Distribution method of \cite{ENORD} to very high order of accuracy, ...Read more >
In this paper we consider the very high order approximation of solutions of the Euler equations. We present a systematic generalization of the Residual Distribution method of \cite{ENORD} to very high order of accuracy, by extending the preliminary work discussed in \cite{abgrallLarat} to systems and hybrid meshes. We present extensive numerical validation for the third and fourth order cases with Lagrange finite elements. In particular, we demonstrate that we an both have a non oscillatory behavior, even for very strong shocks and complex flow patterns, and the expected accuracy on smooth problems.Read less <
European Project
Adaptive Schemes for Deterministic and Stochastic Flow Problems
Origin
Hal imported