A reaction-diffusion system with cross-diffusion modelling the spread of an epidemic disease
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
LANGLAIS, Michel
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Evolution Equations. 2010, vol. 10, n° 4, p. 883-904
Springer Verlag
Résumé en anglais
We provide existence results for nonnegative solutions to a class of reaction-diffusion systems with cross-diffusion modeling the spread of an epidemic disease. The existence of weak solutions is proved by means of an ...Lire la suite >
We provide existence results for nonnegative solutions to a class of reaction-diffusion systems with cross-diffusion modeling the spread of an epidemic disease. The existence of weak solutions is proved by means of an approximation process, the Faedo-Galerkin method, and a compactness argument. Under additional assumptions a global existence result for classical solutions is derived upon using interpolation results between Banach spaces.< Réduire
Mots clés en anglais
S-I-R model
cross-diffusion system
weak solutions
Faedo-Galerkin
classical solution
Origine
Importé de halUnités de recherche