Optimal stopping for predictive maintenance of a structure subject to corrosion
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
See more >
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
DUFOUR, François
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Language
en
Article de revue
This item was published in
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2012, vol. 226, n° 2, p. pp169-181
SAGE Publications
English Abstract
We present a numerical method to compute the optimal maintenance time for a complex dynamic system. An early intervention may be uselessly costly, but a late one may lead to a partial/complete failure of the system, which ...Read more >
We present a numerical method to compute the optimal maintenance time for a complex dynamic system. An early intervention may be uselessly costly, but a late one may lead to a partial/complete failure of the system, which has to be avoided. One must therefore find a balance between these two extreme maintenance policies. To achieve this aim, we model the system by a stochastic hybrid process and propose a numerical method to optimize the maintenance time for this kind of processes. Mathematically, this is an optimal stopping problem. We apply our algorithm to the example of maintenance of a metallic structure subject to corrosion.Read less <
Origin
Hal imported