Adjoint error estimation for residual based discretizations of hyperbolic conservation laws I : linear problems
RICCHIUTO, Mario
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Rapport
Ce document a été publié dans
2011
Résumé en anglais
The current work concerns the study and the implementation of a modern algorithm for error estimation in CFD computations. This estimate involves the dealing of the adjoint argument. By solving the adjoint problem, it is ...Lire la suite >
The current work concerns the study and the implementation of a modern algorithm for error estimation in CFD computations. This estimate involves the dealing of the adjoint argument. By solving the adjoint problem, it is possible to obtain important information about the transport of the error towards the quantity of interest. The aim is to apply for the first time this procedure into Petrov-Galerkin (PG) method. Streamline Upwind Petrov-Galerkin, stabilised Residual Distribution and bubble method are involved for the implementation. Scalar hyperbolic problems are firstly used as test cases.< Réduire
Origine
Importé de halUnités de recherche