Adjoint error estimation for residual based discretizations of hyperbolic conservation laws I : linear problems
RICCHIUTO, Mario
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Leer más >
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Rapport
Este ítem está publicado en
2011
Resumen en inglés
The current work concerns the study and the implementation of a modern algorithm for error estimation in CFD computations. This estimate involves the dealing of the adjoint argument. By solving the adjoint problem, it is ...Leer más >
The current work concerns the study and the implementation of a modern algorithm for error estimation in CFD computations. This estimate involves the dealing of the adjoint argument. By solving the adjoint problem, it is possible to obtain important information about the transport of the error towards the quantity of interest. The aim is to apply for the first time this procedure into Petrov-Galerkin (PG) method. Streamline Upwind Petrov-Galerkin, stabilised Residual Distribution and bubble method are involved for the implementation. Scalar hyperbolic problems are firstly used as test cases.< Leer menos
Orígen
Importado de HalCentros de investigación