Models of the group schemes of roots of unity
Langue
en
Article de revue
Ce document a été publié dans
Annales de l'Institut Fourier. 2013, vol. 63, n° 3, p. 1055-1135
Association des Annales de l'Institut Fourier
Résumé en anglais
Let O_K be a discrete valuation ring of mixed characteristics (0,p), with residue field k. Using work of Sekiguchi and Suwa, we construct some finite flat O_K-models of the group scheme \mu_{p^n,K} of p^n-th roots of unity, ...Lire la suite >
Let O_K be a discrete valuation ring of mixed characteristics (0,p), with residue field k. Using work of Sekiguchi and Suwa, we construct some finite flat O_K-models of the group scheme \mu_{p^n,K} of p^n-th roots of unity, which we call Kummer group schemes. We set carefully the general framework and algebraic properties of this construction. When k is perfect and O_K is a complete totally ramified extension of the ring of Witt vectors W(k), we provide a parallel study of the Breuil-Kisin modules of finite flat models of \mu_{p^n,K}, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for n < 4. This leads us to conjecture that all finite flat models of \mu_{p^n,K} are Kummer group schemes.< Réduire
Origine
Importé de halUnités de recherche