Models of the group schemes of roots of unity
hal.structure.identifier | Laboratoire de Mathématiques de Versailles [LMV] | |
dc.contributor.author | MÉZARD, Ariane | |
hal.structure.identifier | Institut de Mathématiques de Jussieu [IMJ] | |
dc.contributor.author | ROMAGNY, Matthieu | |
hal.structure.identifier | Scuola Normale Superiore di Pisa [SNS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TOSSICI, Dajano | |
dc.date.accessioned | 2024-04-04T02:25:24Z | |
dc.date.available | 2024-04-04T02:25:24Z | |
dc.date.created | 2011-04-12 | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0373-0956 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189883 | |
dc.description.abstractEn | Let O_K be a discrete valuation ring of mixed characteristics (0,p), with residue field k. Using work of Sekiguchi and Suwa, we construct some finite flat O_K-models of the group scheme \mu_{p^n,K} of p^n-th roots of unity, which we call Kummer group schemes. We set carefully the general framework and algebraic properties of this construction. When k is perfect and O_K is a complete totally ramified extension of the ring of Witt vectors W(k), we provide a parallel study of the Breuil-Kisin modules of finite flat models of \mu_{p^n,K}, in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for n < 4. This leads us to conjecture that all finite flat models of \mu_{p^n,K} are Kummer group schemes. | |
dc.language.iso | en | |
dc.publisher | Association des Annales de l'Institut Fourier | |
dc.title.en | Models of the group schemes of roots of unity | |
dc.type | Article de revue | |
dc.identifier.doi | 10.5802/aif.2784 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1104.2232 | |
bordeaux.journal | Annales de l'Institut Fourier | |
bordeaux.page | 1055-1135 | |
bordeaux.volume | 63 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00672822 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00672822v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annales%20de%20l'Institut%20Fourier&rft.date=2013&rft.volume=63&rft.issue=3&rft.spage=1055-1135&rft.epage=1055-1135&rft.eissn=0373-0956&rft.issn=0373-0956&rft.au=M%C3%89ZARD,%20Ariane&ROMAGNY,%20Matthieu&TOSSICI,%20Dajano&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |