Improved CRT Algorithm for Class Polynomials in Genus $2$
Langue
en
Communication dans un congrès
Ce document a été publié dans
ANTS X - Algorithmic Number Theory 2012, 2012-07-09, San Diego. 2013-11-14, vol. 1, p. 437-461
Mathematical Sciences Publisher
Résumé en anglais
We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Br{ö}ker-Gruenewald-Lauter algorithm for the genus~2 case is that we do ...Lire la suite >
We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Br{ö}ker-Gruenewald-Lauter algorithm for the genus~2 case is that we do not need to find a curve in the isogeny class whose endomorphism ring is the maximal order; rather, we present a probabilistic algorithm for ''going up'' to a maximal curve (a curve with maximal endomorphism ring), once we find any curve in the right isogeny class. Then we use the structure of the Shimura class group and the computation of $(\ell,\ell)$-isogenies to compute all isogenous maximal curves from an initial one. This is an extended version of the article published at ANTS~X.< Réduire
Mots clés en anglais
Class polynomials
Projet Européen
Algorithmic Number Theory in Computer Science
Project ANR
Espaces de paramètres pour une arithmétique efficace et une évaluation de la sécurité des courbes - ANR-12-BS01-0010
Origine
Importé de halUnités de recherche