Improved CRT Algorithm for Class Polynomials in Genus $2$
Idioma
en
Communication dans un congrès
Este ítem está publicado en
ANTS X - Algorithmic Number Theory 2012, 2012-07-09, San Diego. 2013-11-14, vol. 1, p. 437-461
Mathematical Sciences Publisher
Resumen en inglés
We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Br{ö}ker-Gruenewald-Lauter algorithm for the genus~2 case is that we do ...Leer más >
We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Br{ö}ker-Gruenewald-Lauter algorithm for the genus~2 case is that we do not need to find a curve in the isogeny class whose endomorphism ring is the maximal order; rather, we present a probabilistic algorithm for ''going up'' to a maximal curve (a curve with maximal endomorphism ring), once we find any curve in the right isogeny class. Then we use the structure of the Shimura class group and the computation of $(\ell,\ell)$-isogenies to compute all isogenous maximal curves from an initial one. This is an extended version of the article published at ANTS~X.< Leer menos
Palabras clave en inglés
Class polynomials
Proyecto europeo
Algorithmic Number Theory in Computer Science
Proyecto ANR
Espaces de paramètres pour une arithmétique efficace et une évaluation de la sécurité des courbes - ANR-12-BS01-0010
Orígen
Importado de HalCentros de investigación