Synchronization of an Excitatory Integrate-and-Fire Neural Network
DUMONT, Grégory
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
HENRY, Jacques
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
DUMONT, Grégory
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
HENRY, Jacques
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Langue
en
Article de revue
Ce document a été publié dans
Bulletin of Mathematical Biology. 2013-02-22, vol. 75, n° 4, p. 629-648
Springer Verlag
Résumé en anglais
In this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is selfexcitatory with a population density approach. Each neuron of ...Lire la suite >
In this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is selfexcitatory with a population density approach. Each neuron of the population is assumed to be stochastically driven by an independent Poisson spike train and the synaptic interaction between neurons is modeled by a potential jump at the reception of an action potential. Neglecting the synaptic delay, we will establish that for a strong enough connectivity between neurons, the solution of the partial differential equation which describes the population density function must blow up in finite time. Furthermore, we will give a mathematical estimate on the average connection per neuron to ensure the occurrence of a burst. Interpreting the blow up of the solution as the presence of a Dirac mass in the firing rate of the population, we will relate the blow up of the solution to the occurrence of the synchronization of neurons. Fully stochastic simulations of a finite size network of leaky integrate-and-fire neurons are performed to illustrate our theoretical results.< Réduire
Mots clés en anglais
Population of neurons
Partial differential equation
Blow up
Synchronization
Integrate-and-fire
Origine
Importé de halUnités de recherche