Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorDUMONT, Grégory
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorHENRY, Jacques
dc.date.accessioned2024-04-04T02:22:07Z
dc.date.available2024-04-04T02:22:07Z
dc.date.issued2013-02-22
dc.identifier.issn0092-8240
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189627
dc.description.abstractEnIn this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is selfexcitatory with a population density approach. Each neuron of the population is assumed to be stochastically driven by an independent Poisson spike train and the synaptic interaction between neurons is modeled by a potential jump at the reception of an action potential. Neglecting the synaptic delay, we will establish that for a strong enough connectivity between neurons, the solution of the partial differential equation which describes the population density function must blow up in finite time. Furthermore, we will give a mathematical estimate on the average connection per neuron to ensure the occurrence of a burst. Interpreting the blow up of the solution as the presence of a Dirac mass in the firing rate of the population, we will relate the blow up of the solution to the occurrence of the synchronization of neurons. Fully stochastic simulations of a finite size network of leaky integrate-and-fire neurons are performed to illustrate our theoretical results.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enPopulation of neurons
dc.subject.enPartial differential equation
dc.subject.enBlow up
dc.subject.enSynchronization
dc.subject.enIntegrate-and-fire
dc.title.enSynchronization of an Excitatory Integrate-and-Fire Neural Network
dc.typeArticle de revue
dc.identifier.doi10.1007/s11538-013-9823-8
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalBulletin of Mathematical Biology
bordeaux.page629-648
bordeaux.volume75
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00822472
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00822472v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bulletin%20of%20Mathematical%20Biology&rft.date=2013-02-22&rft.volume=75&rft.issue=4&rft.spage=629-648&rft.epage=629-648&rft.eissn=0092-8240&rft.issn=0092-8240&rft.au=DUMONT,%20Gr%C3%A9gory&HENRY,%20Jacques&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée