Computing arithmetic Kleinian groups
PAGE, Aurel
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
PAGE, Aurel
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Language
en
Article de revue
This item was published in
Mathematics of Computation. 2015, vol. 84, n° 295, p. 2361-2390
American Mathematical Society
English Abstract
Arithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given such a group Gamma, returns a fundamental domain and a finite presentation for Gamma with a computable isomorphism.
Arithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given such a group Gamma, returns a fundamental domain and a finite presentation for Gamma with a computable isomorphism.Read less <
English Keywords
hyperbolic geometry
fundamental domain
arithmetic group
computational number theory
quaternion algebra
European Project
Algorithmic Number Theory in Computer Science
Origin
Hal imported