Computing the residue of the Dedekind zeta function
BELABAS, Karim
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
BELABAS, Karim
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Language
en
Article de revue
This item was published in
Mathematics of Computation. 2015, vol. 84, n° 291, p. 357-369
American Mathematical Society
English Abstract
Assuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field K by a clever use of the splitting of primes p < X, with an error asymptotically ...Read more >
Assuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field K by a clever use of the splitting of primes p < X, with an error asymptotically bounded by 8.33 log D_K/(\sqrt{X}\log X), where D_K is the absolute value of the discriminant of K. Guided by Weil's explicit formula and still assuming GRH, we make a different use of the splitting of primes and thereby improve Bach's constant to 2.33. This results in substantial speeding of one part of Buchmann's class group algorithm.Read less <
European Project
Algorithmic Number Theory in Computer Science
Origin
Hal imported