Hardy type derivations on fields of exponential logarithmic series
Langue
en
Article de revue
Ce document a été publié dans
Journal of Algebra. 2011, vol. 345, n° 1, p. 171-189
Elsevier
Résumé en anglais
We consider the valued field $\mathds{K}:=\mathbb{R}((\Gamma))$ of formal series (with real coefficients and monomials in a totally ordered multiplicative group $\Gamma>$). We investigate how to endow $\mathds{K}$ with a ...Lire la suite >
We consider the valued field $\mathds{K}:=\mathbb{R}((\Gamma))$ of formal series (with real coefficients and monomials in a totally ordered multiplicative group $\Gamma>$). We investigate how to endow $\mathds{K}$ with a logarithm $l$, which satisfies some natural properties such as commuting with infinite products of monomials. In the article "Hardy type derivations on generalized series fields", we study derivations on $\mathds{K}$. Here, we investigate compatibility conditions between the logarithm and the derivation, i.e. when the logarithmic derivative is the derivative of the logarithm. We analyse sufficient conditions on a given derivation to construct a compatible logarithm via integration of logarithmic derivatives. In her monograph "Ordered exponential fields", the first author described the exponential closure $\mathds{K}^{\rm{EL}}$ of $(\mathds{K},l)$. Here we show how to extend such a log-compatible derivation on $\mathds{K}$ to $\mathds{K}^{\rm{EL}}$.< Réduire
Origine
Importé de halUnités de recherche