Afficher la notice abrégée

dc.contributor.authorKUHLMANN, Salma
hal.structure.identifierÉquipe Géométrie
dc.contributor.authorMATUSINSKI, Mickael
dc.date.accessioned2024-04-04T02:19:40Z
dc.date.available2024-04-04T02:19:40Z
dc.date.created2011-09-11
dc.date.issued2011
dc.identifier.issn0021-8693
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189424
dc.description.abstractEnWe consider the valued field $\mathds{K}:=\mathbb{R}((\Gamma))$ of formal series (with real coefficients and monomials in a totally ordered multiplicative group $\Gamma>$). We investigate how to endow $\mathds{K}$ with a logarithm $l$, which satisfies some natural properties such as commuting with infinite products of monomials. In the article "Hardy type derivations on generalized series fields", we study derivations on $\mathds{K}$. Here, we investigate compatibility conditions between the logarithm and the derivation, i.e. when the logarithmic derivative is the derivative of the logarithm. We analyse sufficient conditions on a given derivation to construct a compatible logarithm via integration of logarithmic derivatives. In her monograph "Ordered exponential fields", the first author described the exponential closure $\mathds{K}^{\rm{EL}}$ of $(\mathds{K},l)$. Here we show how to extend such a log-compatible derivation on $\mathds{K}$ to $\mathds{K}^{\rm{EL}}$.
dc.language.isoen
dc.publisherElsevier
dc.title.enHardy type derivations on fields of exponential logarithmic series
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jalgebra.2011.07.023
dc.subject.halMathématiques [math]/Algèbre commutative [math.AC]
dc.identifier.arxiv1010.0896
bordeaux.journalJournal of Algebra
bordeaux.page171-189
bordeaux.volume345
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00947059
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00947059v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Algebra&rft.date=2011&rft.volume=345&rft.issue=1&rft.spage=171-189&rft.epage=171-189&rft.eissn=0021-8693&rft.issn=0021-8693&rft.au=KUHLMANN,%20Salma&MATUSINSKI,%20Mickael&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée