Décompositions en hauteurs locales
PAZUKI, Fabien
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
PAZUKI, Fabien
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Université Sciences et Technologies - Bordeaux 1 [UB]
Institut de Mathématiques de Bordeaux [IMB]
Langue
fr
Document de travail - Pré-publication
Résumé en anglais
Let A be an abelian variety defined over a number field k. We provide in this paper different decomposition formulas for the Néron-Tate height of k-rational points on A. We deduce a decomposition of the Faltings height of ...Lire la suite >
Let A be an abelian variety defined over a number field k. We provide in this paper different decomposition formulas for the Néron-Tate height of k-rational points on A. We deduce a decomposition of the Faltings height of the variety A itself. We also produce a local decomposition of the self-intersection of the relative dualizing sheaf (\omega_C.\omega_C) when A is the jacobian of a curve C. We formulate in 2.4 a question of Bogomolov type on the space of principally polarized abelian varieties of dimension g.< Réduire
Mots clés en anglais
Heights
Abelian varieties
Torsion points
Rational points
Origine
Importé de halUnités de recherche