Maximal regularity for non-autonomous Schrödinger type equations
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Differential Equations. 2010, vol. 248, p. 1668-1683
Elsevier
Resumen en inglés
In this paper we study the maximal regularity property for nonautonomous evolution equations ∂tu(t)+ A(t)u(t) = f (t), u(0) = 0. If the equation is considered on a Hilbert space H and the operators A(t) are defined by ...Leer más >
In this paper we study the maximal regularity property for nonautonomous evolution equations ∂tu(t)+ A(t)u(t) = f (t), u(0) = 0. If the equation is considered on a Hilbert space H and the operators A(t) are defined by sesquilinear forms a(t, *,*) we prove the maximal regularity under a Hölder continuity assumption of t → a(t, *,*). In the non-Hilbert space situation we focus on Schrödinger type operators A(t) := − + m(t, *) and prove Lp − Lq estimates for a wide class of time and space dependent< Leer menos
Palabras clave en inglés
Maximal Lp − Lq regularity Non-autonomous Cauchy problems Schrödinger operators
Orígen
Importado de HalCentros de investigación