Maximal regularity for non-autonomous Schrödinger type equations
Langue
en
Article de revue
Ce document a été publié dans
Journal of Differential Equations. 2010, vol. 248, p. 1668-1683
Elsevier
Résumé en anglais
In this paper we study the maximal regularity property for nonautonomous evolution equations ∂tu(t)+ A(t)u(t) = f (t), u(0) = 0. If the equation is considered on a Hilbert space H and the operators A(t) are defined by ...Lire la suite >
In this paper we study the maximal regularity property for nonautonomous evolution equations ∂tu(t)+ A(t)u(t) = f (t), u(0) = 0. If the equation is considered on a Hilbert space H and the operators A(t) are defined by sesquilinear forms a(t, *,*) we prove the maximal regularity under a Hölder continuity assumption of t → a(t, *,*). In the non-Hilbert space situation we focus on Schrödinger type operators A(t) := − + m(t, *) and prove Lp − Lq estimates for a wide class of time and space dependent< Réduire
Mots clés en anglais
Maximal Lp − Lq regularity Non-autonomous Cauchy problems Schrödinger operators
Origine
Importé de halUnités de recherche