The equivariant complexity of multiplication in finite field extensions
COUVEIGNES, Jean-Marc
Université de Bordeaux [UB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Université de Bordeaux [UB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
COUVEIGNES, Jean-Marc
Université de Bordeaux [UB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
< Reduce
Université de Bordeaux [UB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Language
en
Article de revue
This item was published in
Journal of Algebra. 2023-05, vol. 622, p. 694-720
Elsevier
English Abstract
We study the complexity of multiplication of two elements in a finite field extension given by their coordinates in a normal basis. We show how to control this complexity using the arithmetic and geometry of algebraic curves.
We study the complexity of multiplication of two elements in a finite field extension given by their coordinates in a normal basis. We show how to control this complexity using the arithmetic and geometry of algebraic curves.Read less <
Origin
Hal imported