Ammonia characterisation of dense cores in the Rosette Molecular Cloud
MONTILLAUD, J.
Univers, Théorie, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) [UTINAM]
Université de Franche-Comté [UFC]
OSU-THETA - Observatoire des Sciences de l'Univers - Terre Homme Environnement Temps Astronomie [OSU-THETA]
Voir plus >
Univers, Théorie, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) [UTINAM]
Université de Franche-Comté [UFC]
OSU-THETA - Observatoire des Sciences de l'Univers - Terre Homme Environnement Temps Astronomie [OSU-THETA]
MONTILLAUD, J.
Univers, Théorie, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) [UTINAM]
Université de Franche-Comté [UFC]
OSU-THETA - Observatoire des Sciences de l'Univers - Terre Homme Environnement Temps Astronomie [OSU-THETA]
< Réduire
Univers, Théorie, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) [UTINAM]
Université de Franche-Comté [UFC]
OSU-THETA - Observatoire des Sciences de l'Univers - Terre Homme Environnement Temps Astronomie [OSU-THETA]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2022-11-18, vol. 667, p. A137
EDP Sciences
Résumé en anglais
Context. The Rosette molecular cloud complex is a well-known Galactic star-forming region with a morphology pointing towards triggered star formation. The distribution of its young stellar population and the gas properties ...Lire la suite >
Context. The Rosette molecular cloud complex is a well-known Galactic star-forming region with a morphology pointing towards triggered star formation. The distribution of its young stellar population and the gas properties point to the possibility that star formation is globally triggered in the region. Aims. We focus on the characterisation of the most massive pre- and protostellar cores distributed throughout the molecular cloud in order to understand the star formation processes in the region. Methods. We observed a sample of 33 dense cores, identified in Herschel continuum maps, with the Effelsberg 100-m telescope. Using NH 3 (1,1) and (2,2) measurements, we characterise the dense core population, computing rotational and gas kinetic temperatures and NH 3 column density with multiple methods. We also estimated the gas pressure ratio and virial parameters to examine the stability of the cores. Using results from Berschel data, we examined possible correlations between gas and dust parameters. Results. Ammonia emission is detected towards 31 out of the 33 selected targets. We estimate kinetic temperatures to be between 12 and 20 K, and column densities within the 10 14 −2 × 10 15 cm −2 range in the selected targets. Our virial analysis suggests that most sources are likely to be gravitationally bound, while the line widths are dominated by non-thermal motions. Our results are compatible with large-scale dust temperature maps suggesting that the temperature decreases and column density increases with distance from NGC 2244 except for the densest protoclusters. We also identify a small spatial shift between the ammonia and dust peaks in the regions most exposed to irradiation from the nearby NGC 2244 stellar cluster. However, we find no trends in terms of core evolution with spatial location, in the prestellar to protostellar core abundance ratio, or the virial parameter. Conclusions. Star formation is more likely based on the primordial structure of the cloud in spite of the impact of irradiation from the nearby cluster, NGC 2244. The physical parameters from the NH 3 measurements suggest gas properties in between those of low- and high-mass star-forming regions, suggesting that the Rosette molecular cloud could host ongoing intermediate-mass star formation, and is unlikely to form high-mass stars.< Réduire
Project ANR
GENeration et Evolution des Structures du milieu InterStellaire - ANR-16-CE92-0035
Origine
Importé de halUnités de recherche