Water condensation zones around main sequence stars
TURBET, Martin
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Observatoire Astronomique de l'Université de Genève [ObsGE]
Voir plus >
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Observatoire Astronomique de l'Université de Genève [ObsGE]
TURBET, Martin
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Observatoire Astronomique de l'Université de Genève [ObsGE]
Laboratoire de Météorologie Dynamique (UMR 8539) [LMD]
Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
Observatoire Astronomique de l'Université de Genève [ObsGE]
CHARNAY, Benjamin
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
< Réduire
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2023, vol. 679, p. A126
EDP Sciences
Résumé en anglais
Understanding the set of conditions that allow rocky planets to have liquid water on their surface -- in the form of lakes, seas or oceans -- is a major scientific step to determine the fraction of planets potentially ...Lire la suite >
Understanding the set of conditions that allow rocky planets to have liquid water on their surface -- in the form of lakes, seas or oceans -- is a major scientific step to determine the fraction of planets potentially suitable for the emergence and development of life as we know it on Earth. This effort is also necessary to define and refine the so-called "Habitable Zone" (HZ) in order to guide the search for exoplanets likely to harbor remotely detectable life forms. Until now, most numerical climate studies on this topic have focused on the conditions necessary to maintain oceans, but not to form them in the first place. Here we use the three-dimensional Generic Planetary Climate Model (PCM), historically known as the LMD Generic Global Climate Model (GCM), to simulate water-dominated planetary atmospheres around different types of Main-Sequence stars. The simulations are designed to reproduce the conditions of early ocean formation on rocky planets due to the condensation of the primordial water reservoir at the end of the magma ocean phase. We show that the incoming stellar radiation (ISR) required to form oceans by condensation is always drastically lower than that required to vaporize oceans. We introduce a Water Condensation Limit, which lies at significantly lower ISR than the inner edge of the HZ calculated with three-dimensional numerical climate simulations. This difference is due to a behavior change of water clouds, from low-altitude dayside convective clouds to high-altitude nightside stratospheric clouds. Finally, we calculated transit spectra, emission spectra and thermal phase curves of TRAPPIST-1b, c and d with H2O-rich atmospheres, and compared them to CO2 atmospheres and bare rock simulations. We show using these observables that JWST has the capability to probe steam atmospheres on low-mass planets, and could possibly test the existence of nightside water clouds.< Réduire
Mots clés en anglais
Earth and Planetary Astrophysics (astro-ph.EP)
Atmospheric and Oceanic Physics (physics.ao-ph)
Geophysics (physics.geo-ph)
FOS: Physical sciences
Projet Européen
Plasma Circulating Tumor DNA Levels for the Monitoring of Melanoma Patients: Landscape of Available Technologi
WHat next? an Integrated PLanetary Atmosphere Simulator: from Habitable worlds to Hot jupiters
WHat next? an Integrated PLanetary Atmosphere Simulator: from Habitable worlds to Hot jupiters
Project ANR
Simulations et Observations de la dynamique atmosphérique d'Uranus et Neptune
Origine
Importé de halUnités de recherche