Quantitative absorption imaging of optically dense effective two-level systems
Langue
en
Article de revue
Ce document a été publié dans
Phys.Rev.Res. 2022, vol. 4, n° 3, p. 033033
Résumé en anglais
Absorption imaging is a commonly adopted method to acquire, with high temporal resolution, spatial information on a partially transparent object. It relies on the interference between a probe beam and the coherent response ...Lire la suite >
Absorption imaging is a commonly adopted method to acquire, with high temporal resolution, spatial information on a partially transparent object. It relies on the interference between a probe beam and the coherent response of the object. In the low saturation regime, it is well described by a Beer Lambert attenuation. In this paper we theoretically derive the absorption of a $\sigma$ polarized laser probe by an ensemble of two-level systems in any saturation regime. We experimentally demonstrate that the absorption cross section in dense $^{87}$Rb cold atom ensembles is reduced, with respect to the single particle response, by a factor proportional to the optical density b of the medium. To explain this reduction, we developed a model that incorporates, in the single particle response, the incoherent electromagnetic background emitted by the surrounding ensemble. We show that it qualitatively reproduces the experimental results. Our calibration factor that has a universal dependence on optical density $b$ for $\sigma$ polarized light : $\alpha$ = 1.17(9) + 0.255(2)b allows to obtain quantitative and absolute, in situ, images of dense quantum systems.< Réduire
Mots clés en anglais
density
optical
cross section
absorption
background
electromagnetic
saturation
imaging
attenuation
laser
calibration
experimental results
coherence
interference
channel cross section
ratio
atom
resolution
Project ANR
Atomes Ultra-Froids piégés dans des Réseaux Optiques Nano-Structurés - ANR-18-CE47-0001
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Origine
Importé de halUnités de recherche