Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorVEYRON, Romain
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorMANCOIS, Vincent
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGERENT, Jean-Baptiste
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBACLET, Guillaume
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBOUYER, Philippe
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBERNON, Simon
dc.date.accessioned2023-05-12T10:29:42Z
dc.date.available2023-05-12T10:29:42Z
dc.date.issued2022
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181374
dc.description.abstractEnAbsorption imaging is a commonly adopted method to acquire, with high temporal resolution, spatial information on a partially transparent object. It relies on the interference between a probe beam and the coherent response of the object. In the low saturation regime, it is well described by a Beer Lambert attenuation. In this paper we theoretically derive the absorption of a $\sigma$ polarized laser probe by an ensemble of two-level systems in any saturation regime. We experimentally demonstrate that the absorption cross section in dense $^{87}$Rb cold atom ensembles is reduced, with respect to the single particle response, by a factor proportional to the optical density b of the medium. To explain this reduction, we developed a model that incorporates, in the single particle response, the incoherent electromagnetic background emitted by the surrounding ensemble. We show that it qualitatively reproduces the experimental results. Our calibration factor that has a universal dependence on optical density $b$ for $\sigma$ polarized light : $\alpha$ = 1.17(9) + 0.255(2)b allows to obtain quantitative and absolute, in situ, images of dense quantum systems.
dc.description.sponsorshipAtomes Ultra-Froids piégés dans des Réseaux Optiques Nano-Structurés - ANR-18-CE47-0001
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
dc.language.isoen
dc.subject.endensity
dc.subject.enoptical
dc.subject.encross section
dc.subject.enabsorption
dc.subject.enbackground
dc.subject.enelectromagnetic
dc.subject.ensaturation
dc.subject.enimaging
dc.subject.enattenuation
dc.subject.enlaser
dc.subject.encalibration
dc.subject.enexperimental results
dc.subject.encoherence
dc.subject.eninterference
dc.subject.enchannel cross section
dc.subject.enratio
dc.subject.enatom
dc.subject.enresolution
dc.title.enQuantitative absorption imaging of optically dense effective two-level systems
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevResearch.4.033033
dc.subject.halPhysique [physics]/Physique Quantique [quant-ph]
dc.subject.halPhysique [physics]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Atomique [physics.atom-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Générale [physics.gen-ph]
dc.identifier.arxiv2110.12505
bordeaux.journalPhys.Rev.Res
bordeaux.page033033
bordeaux.volume4
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03419092
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03419092v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Phys.Rev.Res&rft.date=2022&rft.volume=4&rft.issue=3&rft.spage=033033&rft.epage=033033&rft.au=VEYRON,%20Romain&MANCOIS,%20Vincent&GERENT,%20Jean-Baptiste&BACLET,%20Guillaume&BOUYER,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée