Alteration of microbiota antibody-mediated immune selection contributes to dysbiosis in inflammatory bowel diseases
Langue
EN
Article de revue
Ce document a été publié dans
EMBO Molecular Medicine. 2022-08-08, vol. 14, n° 8
Résumé en anglais
Abstract Human secretory immunoglobulins (SIg) A1 and SIgA2 guide mucosal responses toward tolerance or inflammation, notably through reverse-transcytosis, the apical-to-basal transport of IgA2 immune complexes via M cells ...Lire la suite >
Abstract Human secretory immunoglobulins (SIg) A1 and SIgA2 guide mucosal responses toward tolerance or inflammation, notably through reverse-transcytosis, the apical-to-basal transport of IgA2 immune complexes via M cells of gut Peyer's patches. As such, the maintenance of a diverse gut microbiota requires broad affinity IgA and glycan?glycan interaction. Here, we asked whether IgA1 and IgA2-microbiota interactions might be involved in dysbiosis induction during inflammatory bowel diseases. Using stool HPLC-purified IgA, we show that reverse-transcytosis is abrogated in ulcerative colitis (UC) while it is extended to IgA1 in Crohn's disease (CD). 16S RNA sequencing of IgA-bound microbiota in CD and UC showed distinct IgA1- and IgA2-associated microbiota; the IgA1+ fraction of CD microbiota was notably enriched in beneficial commensals. These features were associated with increased IgA anti-glycan reactivity in CD and an opposite loss of reactivity in UC. Our results highlight previously unknown pathogenic properties of IgA in IBD that could support dysbiosis.< Réduire
Mots clés en anglais
SIgA
Microbiota
Glycosylation
IBD
Immunity
Unités de recherche