An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
Langue
EN
Article de revue
Ce document a été publié dans
AIMS Mathematics. 2022-09-26, vol. 7, n° 12, p. 20684-20710
Résumé en anglais
<abstract><p>In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded $ \log $-Whittle-Mat$ \acute{{\mathrm{e}}} $rn (W-M) random diffusion coefficient field and $ Q $-Wiener multiplicative ...Lire la suite >
<abstract><p>In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded $ \log $-Whittle-Mat$ \acute{{\mathrm{e}}} $rn (W-M) random diffusion coefficient field and $ Q $-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness, and stability of the mild solution. A sampling approach called approximation circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical experiments are finally reported to confirm the theoretical result.</p></abstract>< Réduire
Mots clés en anglais
SEEs
Random coefficient
Q -Wiener multiplicative noise
Strong convergence
Unités de recherche