The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria
Langue
EN
Article de revue
Ce document a été publié dans
International Journal of Molecular Sciences. 2022-10-02, vol. 23, n° 19
Résumé en anglais
Metabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin ...Lire la suite >
Metabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin signature could provide a new clinical tool to enhance the phenotyping of MetS pathophysiology. A high-throughput validated mass spectrometry method, allowing for the quantitative profiling of over 130 oxylipins, was applied to identify and validate the oxylipin signature of MetS in two independent nested case/control studies involving 476 participants. We identified an oxylipin signature of MetS (coined OxyScore), including 23 oxylipins and having high performances in classification and replicability (cross-validated AUC(ROC) of 89%, 95% CI: 85-93% and 78%, 95% CI: 72-85% in the Discovery and Replication studies, respectively). Correlation analysis and comparison with a classification model incorporating the MetS criteria showed that the oxylipin signature brings consistent and complementary information to the clinical criteria. Being linked with the regulation of various biological processes, the candidate oxylipins provide an integrative phenotyping of MetS regarding the activation and/or negative feedback regulation of crucial molecular pathways. This may help identify patients at higher risk of cardiometabolic diseases. The oxylipin signature of patients with metabolic syndrome enhances MetS phenotyping and may ultimately help to better stratify the risk of cardiometabolic diseases.< Réduire
Mots clés en anglais
Oxylipins
Lipid mediators
Lipidomics
Metabolic syndrome
Metabolic phenotyping
Project ANR
Oxylipins signature to monitor the cardiometabolic status and its response to dietary intervention - ANR-16-HDHL-0004
Unités de recherche