An efficient spectra processing method for metabolite identification from (1)H-NMR metabolomics data.
JACOB, Daniel
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
DEBORDE, Catherine
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
MOING, Annick
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
JACOB, Daniel
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
DEBORDE, Catherine
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
MOING, Annick
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
< Reduce
Biologie du fruit et pathologie [BFP]
Institut de Biologie Végétale Moléculaire : actions communes [IBVM]
Plateforme Bordeaux Metabolome
Language
en
Article de revue
This item was published in
Analytical and Bioanalytical Chemistry. 2013, vol. 405, p. 5049-5061
Springer Verlag
English Abstract
The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR ...Read more >
The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author.Read less <
English Keywords
1 H-NMR spectroscopy
Spectra processing
Metabolite identification
Metabolomics
Origin
Hal importedCollections