Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Colloid and Interface Science. 2019, vol. 548, p. 275-283
Elsevier
Resumen en inglés
Coacervation is a phase separation process involving two aqueous phases, one solute-phase and one solute-poor phase. It is frequently observed among oppositely-charged polyelectrolyte systems. In this study, we focus on ...Leer más >
Coacervation is a phase separation process involving two aqueous phases, one solute-phase and one solute-poor phase. It is frequently observed among oppositely-charged polyelectrolyte systems. In this study, we focus on self-coacervation involving a single polymer chain and investigate its potential for encapsulation applications. Negatively charged polyacrylic acid polymer chains were partially cationized using diamine and carbodiimide chemistry affording ampholytes, named PAA-DA, with tunable charge ratio. When dispersed in water, at pH 7, PAA-DA was soluble but a phase separation occurs when decreasing pH close to the isoelectric point. Coacervation is found only for a given amine-to-acid ratio otherwise precipitation is observed. Increasing the pH above 4 yielded progressive destruction of the coacervates droplets via the formation of vacuoles within droplets and subsequent full homogeneous redispersion of PAA-DA in water. However, addition of calcium allowed increasing the coacervate droplet stability upon increasing the pH to 7 as the divalent ion induced gelation within droplets. Moreover, the coacervate droplets present the ability to spontaneously sequestrate a broad panel of entities, from small molecules to macromolecules or colloids, with different charges, size and hydrophobicity. Thanks to the reversible character of the coacervates, triggered-release could be easily achieved, either by varying the pH or by removing calcium ions in the case of calcium-stabilized coacervates. Self-coacervation presents the advantage of pathway-independent preparation, offering a real output interest in pharmacy, water treatment, food science or diagnostics.< Leer menos
Palabras clave
Sequestration
Palabras clave en inglés
Self-coacervation
Water-in-water emulsion
Orígen
Importado de HalCentros de investigación