A Rademacher-Menchov approach for random coefficient bifurcating autoregressive processes
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BLANDIN, Vassili
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
BLANDIN, Vassili
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Language
en
Document de travail - Pré-publication
English Abstract
We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, ...Read more >
We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, we establish the almost sure convergence of our estimates. In addition, we also prove a quadratic strong law and central limit theorems. Our approach mainly relies on asymptotic results for vector-valued martingales together with the well-known Rademacher-Menchov theorem.Read less <
Origin
Hal imported