Computing gap-free Pareto front approximations with stochastic search algorithms
SCHÜTZE, Oliver
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
LAUMANNS, Marco
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
See more >
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
SCHÜTZE, Oliver
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
LAUMANNS, Marco
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
COELLO COELLO, Carlos
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
< Reduce
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV]
Language
en
Article de revue
This item was published in
Evolutionary Computation. 2010-03, vol. 18, n° 1, p. 65-96
Massachusetts Institute of Technology Press (MIT Press)
English Abstract
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation ...Read more >
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of ε-dominance. Though bounds on the quality of the limit approximation---which are entirely determined by the archiving strategy and the value of ε---have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a ∈ A, is “large.” Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy---multi-objective continuation methods---by showing that the concept of ε-dominance can be integrated into this approach in a suitable way.Read less <
Origin
Hal imported