Phonon-Induced Pairing in Quantum Dot Quantum Simulator
BHATTACHARYA, Utso
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Max-Planck-Institut für Quantenoptik [MPQ]
Voir plus >
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Max-Planck-Institut für Quantenoptik [MPQ]
BHATTACHARYA, Utso
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Max-Planck-Institut für Quantenoptik [MPQ]
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Max-Planck-Institut für Quantenoptik [MPQ]
LEWENSTEIN, Maciej
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Institució Catalana de Recerca i Estudis Avançats = Catalan Institution for Research and Advanced Studies [ICREA]
< Réduire
Institut de Ciencies Fotoniques [Castelldefels] [ICFO]
Institució Catalana de Recerca i Estudis Avançats = Catalan Institution for Research and Advanced Studies [ICREA]
Langue
en
Article de revue
Ce document a été publié dans
Nano Letters. 2021, vol. 21, n° 22, p. 9661 - 9667
American Chemical Society
Résumé en anglais
Quantum simulations can provide new insights into the physics of strongly correlated electronic systems. A well-studied system, but still open in many regards, is the Hubbard−Holstein Hamiltonian, where electronic repulsion ...Lire la suite >
Quantum simulations can provide new insights into the physics of strongly correlated electronic systems. A well-studied system, but still open in many regards, is the Hubbard−Holstein Hamiltonian, where electronic repulsion is in competition with attraction generated by the electron−phonon coupling. In this context, we study the behavior of four quantum dots in a suspended carbon nanotube and coupled to its flexural degrees of freedom. The system is described by a Hamiltonian of the Hubbard−Holstein class, where electrons on different sites interact with the same phonon. We find that the system presents a transition from the Mott insulating state to a polaronic state, with the appearance of pairing correlations and the breaking of the translational symmetry. These findings will motivate further theoretical and experimental efforts to employ nanoelectromechanical systems to simulate strongly correlated systems with electron−phonon interactions.< Réduire
Mots clés en anglais
superconductivity
electron−phonon coupling
charge order
nanotubes
Quantum simulation
Project ANR
Nano-optomécanique en cavité dans le régime de couplage ultrafort. - ANR-19-CE47-0012
Origine
Importé de halUnités de recherche