Afficher la notice abrégée

hal.structure.identifierInstitut de Ciencies Fotoniques [Castelldefels] [ICFO]
hal.structure.identifierMax-Planck-Institut für Quantenoptik [MPQ]
dc.contributor.authorBHATTACHARYA, Utso
hal.structure.identifierInstitut de Ciencies Fotoniques [Castelldefels] [ICFO]
dc.contributor.authorGRASS, Tobias
hal.structure.identifierInstitut de Ciencies Fotoniques [Castelldefels] [ICFO]
dc.contributor.authorBACHTOLD, Adrian
hal.structure.identifierInstitut de Ciencies Fotoniques [Castelldefels] [ICFO]
hal.structure.identifierInstitució Catalana de Recerca i Estudis Avançats = Catalan Institution for Research and Advanced Studies [ICREA]
dc.contributor.authorLEWENSTEIN, Maciej
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorPISTOLESI, Fabio
dc.date.issued2021
dc.identifier.issn1530-6984
dc.description.abstractEnQuantum simulations can provide new insights into the physics of strongly correlated electronic systems. A well-studied system, but still open in many regards, is the Hubbard−Holstein Hamiltonian, where electronic repulsion is in competition with attraction generated by the electron−phonon coupling. In this context, we study the behavior of four quantum dots in a suspended carbon nanotube and coupled to its flexural degrees of freedom. The system is described by a Hamiltonian of the Hubbard−Holstein class, where electrons on different sites interact with the same phonon. We find that the system presents a transition from the Mott insulating state to a polaronic state, with the appearance of pairing correlations and the breaking of the translational symmetry. These findings will motivate further theoretical and experimental efforts to employ nanoelectromechanical systems to simulate strongly correlated systems with electron−phonon interactions.
dc.description.sponsorshipNano-optomécanique en cavité dans le régime de couplage ultrafort. - ANR-19-CE47-0012
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.ensuperconductivity
dc.subject.enelectron−phonon coupling
dc.subject.encharge order
dc.subject.ennanotubes
dc.subject.enQuantum simulation
dc.title.enPhonon-Induced Pairing in Quantum Dot Quantum Simulator
dc.typeArticle de revue
dc.identifier.doi10.1021/acs.nanolett.1c03457
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Systèmes mésoscopiques et effet Hall quantique [cond-mat.mes-hall]
dc.identifier.arxiv2106.09418
bordeaux.journalNano Letters
bordeaux.page9661 - 9667
bordeaux.volume21
bordeaux.issue22
bordeaux.peerReviewedoui
hal.identifierhal-03464766
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03464766v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nano%20Letters&rft.date=2021&rft.volume=21&rft.issue=22&rft.spage=9661%20-%209667&rft.epage=9661%20-%209667&rft.eissn=1530-6984&rft.issn=1530-6984&rft.au=BHATTACHARYA,%20Utso&GRASS,%20Tobias&BACHTOLD,%20Adrian&LEWENSTEIN,%20Maciej&PISTOLESI,%20Fabio&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée