The system will be going down for regular maintenance. Please save your work and logout.
Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat
LAMARQUE, Laurent
Biodiversité, Gènes & Communautés [BioGeCo]
Ecophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
See more >
Biodiversité, Gènes & Communautés [BioGeCo]
Ecophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
LAMARQUE, Laurent
Biodiversité, Gènes & Communautés [BioGeCo]
Ecophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
Biodiversité, Gènes & Communautés [BioGeCo]
Ecophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
COCHARD, Hervé
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
TORRES RUIZ, Jose Manuel
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
< Reduce
Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant [PIAF]
Language
en
Article de revue
This item was published in
Plant, Cell and Environment. 2020, vol. Online first, p. 1-12
Wiley
English Abstract
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (g(s)) during ...Read more >
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (g(s)) during dehydration were associated with changes in leaf hydraulic conductance (K-leaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of g(s) was concomitant with declining K-leaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after K-leaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of K-leaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that K-leaf decline during water stress was not a major driver of stomatal closure.Read less <
Keywords
hydraulic conductance
English Keywords
crops
drought stress
ANR Project
Plateforme d'Innovation " Forêt-Bois-Fibre-Biomasse du Futur " - ANR-10-EQPX-0016
COntinental To coastal Ecosystems: evolution, adaptability and governance - ANR-10-LABX-0045
COntinental To coastal Ecosystems: evolution, adaptability and governance - ANR-10-LABX-0045
Origin
Hal imported