The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe
PARDOS, M.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
DEL RÍO, M.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
PRETZSCH, H.
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
See more >
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
PARDOS, M.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
DEL RÍO, M.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
PRETZSCH, H.
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
BRAVO, F.
Universidad de Valladolid [Valladolid] [UVa]
Higher Technical School of Agricultural Engineering
Universidad de Valladolid [Valladolid] [UVa]
Higher Technical School of Agricultural Engineering
ENGEL, M.
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
NOTHDURFT, A.
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
RUÍZ-PEINADO, R.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
UHL, E.
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
Bayerische Landesanstalt für Wald und Forstwirtschaft - Bavarian State Institute of Forestry [LWF]
Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM]
Bayerische Landesanstalt für Wald und Forstwirtschaft - Bavarian State Institute of Forestry [LWF]
CALAMA, R.
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
< Reduce
Centro de Investigacion Forestal [INIA-CIFOR]
Universidad de Valladolid [Valladolid] [UVa]
Language
en
Article de revue
This item was published in
Forest Ecology and Management. 2020-10-28, vol. 481, p. 1-15
Elsevier
English Abstract
Despite growing evidence that diverse forests play an important role in ecosystem functioning, ensuring the provision of different ecosystem services, whether such diversity improves their response to drought events remains ...Read more >
Despite growing evidence that diverse forests play an important role in ecosystem functioning, ensuring the provision of different ecosystem services, whether such diversity improves their response to drought events remains unclear. In this study, we use a large tree-ring database from thirty case studies across nine European countries and eleven species, covering from Mediterranean to hemiboreal forests, to test if the growth response to site specific drought events that occurred between 1975 and 2015 varied between mixed and monospecific stands. In particular, we quantify how stands resist those specific drought events and recover after them, thus analyzing their resilience. For each drought event and forest stand we calculated resistance, recovery, resilience and relative resilience and we related the variation in these indices between monospecific and mixed stands with type of admixture, tree species identity, site aridity gradient, stand basal area and stand age. We found a large variability among case studies, even for those that share similar species composition and have similar climates. On average, mixed stands showed higher resistance, resilience and relative resilience to drought events than monospecific stands. However, the beneficial effect of mixtures could not be generalized, being greatly modulated by the type of admixture and tree species identity, and depending on site water supply and stand characteristics, such as basal area and age. The increase in resilience in mixtures compared with monocultures was greater on the conifer-broadleaved admixtures, and to a lesser extent in the broadleaved-broadleaved combinations. The observed response patterns to drought largely varied among the eleven studied species, thus revealing the importance of functional traits for understanding a species' response to drought across its distribution range. Along the site aridity gradient, resilience and relative resilience to drought increased in drier sites for both monospecific and mixed stands, with an observed trend towards higher resilience in mixed stands in the drier and hotter sites. Our results confirm the complexity of the relationships found of resistance, recovery, resilience and relative resilience with drought when comparing pure vs mixed stands.Read less <
English Keywords
Drought event
Functional diversity
Mixing effects
floret indices
Tree-ring data
ANR Project
Mixed species forest management. Lowering risk, increasing resilience
Origin
Hal imported