Observation of uncompensated bound charges at improper ferroelectric domain walls
SHAPOVALOV, Konstantin
Institut de Ciència de Materials de Barcelona [ICMAB]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Voir plus >
Institut de Ciència de Materials de Barcelona [ICMAB]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
SHAPOVALOV, Konstantin
Institut de Ciència de Materials de Barcelona [ICMAB]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Institut de Ciència de Materials de Barcelona [ICMAB]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
MEIER, Dennis
Norwegian University of Science and Technology [Trondheim] [NTNU]
Department of Materials [ETH Zürich] [D-MATL]
< Réduire
Norwegian University of Science and Technology [Trondheim] [NTNU]
Department of Materials [ETH Zürich] [D-MATL]
Langue
en
Article de revue
Ce document a été publié dans
Nano Letters. 2019-02-12, vol. 19, n° 3, p. 1659–1664
American Chemical Society
Résumé en anglais
Low-temperature electrostatic force microscopy (EFM) is used to probe unconventional domain walls in the improper ferroelectric semiconductor Er0.99Ca0.01MnO3 down to cryogenic temperatures. The low-temperature EFM maps ...Lire la suite >
Low-temperature electrostatic force microscopy (EFM) is used to probe unconventional domain walls in the improper ferroelectric semiconductor Er0.99Ca0.01MnO3 down to cryogenic temperatures. The low-temperature EFM maps reveal pronounced electric far fields generated by partially uncompensated domain-wall bound charges. Positively and negatively charged walls display qualitatively different fields as a function of temperature, which we explain based on different screening mechanisms and the corresponding relaxation time of the mobile carriers. Our results demonstrate domain walls in improper ferroelectrics as a unique example of natural interfaces that are stable against the emergence of electrically uncompensated bound charges. The outstanding robustness of improper ferroelectric domain walls in conjunction with their electronic versatility brings us an important step closer to the development of durable and ultrasmall electronic components for next-generation nanotechnology.< Réduire
Project ANR
Initiative d'excellence de l'Université de Bordeaux
Origine
Importé de halUnités de recherche