Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2
VELÁZQUEZ, Matias
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Science et Ingénierie des Matériaux et Procédés [SIMaP]
See more >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Science et Ingénierie des Matériaux et Procédés [SIMaP]
VELÁZQUEZ, Matias
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Science et Ingénierie des Matériaux et Procédés [SIMaP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Science et Ingénierie des Matériaux et Procédés [SIMaP]
MESSIO, L.
Laboratoire de Physique Théorique de la Matière Condensée [LPTMC]
Institut universitaire de France [IUF]
< Reduce
Laboratoire de Physique Théorique de la Matière Condensée [LPTMC]
Institut universitaire de France [IUF]
Language
en
Article de revue
This item was published in
Nature Physics. 2020-04, vol. 16, n° 4, p. 469-474
Nature Publishing Group
English Abstract
Spin liquids are exotic phases of quantum matter challenging Landau's paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While ...Read more >
Spin liquids are exotic phases of quantum matter challenging Landau's paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While well-established for 1D quantum antiferromagnets, in higher dimension where quantum fluctuations are less acute, realizing and understanding such states represent major issues, both theoretical and experimental. In this respect the simplest nearest-neighbor Heisenberg antiferromagnet Hamiltonian on the highly frustrated kagome lattice has proven to be a fascinating and inspiring model. The exact nature of its ground state remains elusive and the existence of a spin-gap is the first key-issue to be addressed to discriminate between the various classes of proposed spin liquids. Here, through low-temperature Nuclear Magnetic Resonance (NMR) contrast experiments on high quality single crystals, we single out the kagome susceptibility and the corresponding dynamics in the kagome archetype, the mineral herbertsmithite, ZnCu$_3$(OH)$_6$Cl$_2$. We firmly conclude that this material does not harbor any spin-gap, which restores a convergence with recent numerical results promoting a gapless Dirac spin liquid as the ground state of the Heisenberg kagome antiferromagnet.Read less <
ANR Project
Liquides de Spin Quantiques sur réseau Kagome - ANR-18-CE30-0022
Origin
Hal imported