Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry
Language
en
Article de revue
This item was published in
Materials Horizons. 2021, vol. 8, n° 2, p. 565-570
the Royal Society of Chemistry
English Abstract
We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of ...Read more >
We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.Read less <
ANR Project
Advanced Materials by Design - ANR-10-LABX-0042
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Origin
Hal imported