Multimetastability, phototrapping, and thermal trapping of a metastable commensurate superstructure in a FeII spin-crossover compound
Language
en
Article de revue
This item was published in
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2012, vol. 86, n° 6, p. 064106
American Physical Society
English Abstract
The photoinduced switching and subsequent relaxation regime at cryogenic temperatures of the two-step spin-crossover compound [Fe(bapbpy)(NCS)2] has been investigated by time-dependent photocrystallography. Upon photoexcitation ...Read more >
The photoinduced switching and subsequent relaxation regime at cryogenic temperatures of the two-step spin-crossover compound [Fe(bapbpy)(NCS)2] has been investigated by time-dependent photocrystallography. Upon photoexcitation from the low-spin (LS) state, a direct population of the metastable high-spin (HS) state occurs, without involving any intermediate structural state. The relaxation from the metastable HS state in isothermal conditions at 40 K proceeds in two successive steps associated with two symmetry breaking processes. The first step corresponds to the cooperative transformation to an intermediate superstructure, characterized by a long-range-ordered [HS-LS-LS] motif coupled to a commensurate displacive modulation, and concomitant with a tripling of the c axis of the unit cell (C2/c space group). The stabilization of the intermediate state is driven by strong molecule-lattice coupling. In the second stage, the intermediate state undergoes a transformation twinning triggered by lattice strain towards the LS state. The two-step relaxation is reminiscent of the two-step thermal transition of [Fe(bapbpy)(NCS)2] and evidences multimetastability in the light-induced or relaxation regime. The long-range-ordered [HS-LS-LS] superstructure has also been trapped by rapid quench cooling to very low temperature, and has been structurally characterized.Read less <
English Keywords
Photoinduced switching
Relaxation
Cryogenic temperatures
Spin-crossover compound
Origin
Hal imported