Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals
PETIT, Yannick
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
See more >
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
PETIT, Yannick
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
< Reduce
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Language
en
Article de revue
This item was published in
Optics Express. 2013-01-14, vol. 21, n° 1, p. 822-833
Optical Society of America - OSA Publishing
English Abstract
We report on two-photon excited fluorescence in the oriented Eu3+-doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam ...Read more >
We report on two-photon excited fluorescence in the oriented Eu3+-doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam simultaneously provide the independent excitation of two distinct focuses, leading to a single-beam dual-voxel nonlinear excitation of fluorescence below material modification threshold. These observations emphasize on the anisotropy of both two-photon absorption as well as fluorescence emission. They demonstrate the localized control of the nonlinear energy deposit, thanks to the adjustment of both the input power and polarization, by properly balancing the injected energy in each voxel. Such approach should be considered for future direct laser writing of waveguides in propagation directions out of the dielectric axes, so as to optimally cope with the highly probable anisotropy of laser-induced material modification thresholds in these crystals. These results open new ways for further potential developments in direct laser writing as the simultaneous inscription of double-line structures for original waveguides processes.Read less <
English Keywords
(160.1190) Anisotropic optical materials
(260.1180) Crystal optics
(260.1440) Birefringence
(270.4180) Multiphoton processes
(300.2530) Fluorescence
laser-induced
(260.5430) Polarization
(230.7370) Waveguides
(050.6875) Three-dimensional fabrication.
(050.6875) Three-dimensional fabrication
Origin
Hal imported