Anisotropy of random motions of gas in Messier 33
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2020, vol. 639
EDP Sciences
Résumé en anglais
Context. The ellipsoid of random motions of the gaseous medium in galactic disks is often considered isotropic, as appropriate if the gas is highly collisional. However, the collisional or collisionless behavior of the gas ...Lire la suite >
Context. The ellipsoid of random motions of the gaseous medium in galactic disks is often considered isotropic, as appropriate if the gas is highly collisional. However, the collisional or collisionless behavior of the gas is a subject of debate. If the gas is clumpy with a low collision rate, then the often observed asymmetries in the gas velocity dispersion could be hints of anisotropic motions in a gaseous collisionless medium. <BR /> Aims: We study the properties of anisotropic and axisymmetric velocity ellipsoids from maps of the gas velocity dispersion in nearby galaxies. This data allow us to measure the azimuthal-to-radial axis ratio of gas velocity ellipsoids, which is a useful tool to study the structure of gaseous orbits in the disk. We also present the first estimates of perturbations in gas velocity dispersion maps by applying an alternative model that considers isotropic and asymmetric random motions. <BR /> Methods: High-quality velocity dispersion maps of the atomic medium at various angular resolutions of the nearby spiral galaxy Messier 33, are used to test the anisotropic and isotropic velocity models. The velocity dispersions of hundreds of individual molecular clouds are also analyzed. <BR /> Results: The HI velocity dispersion of M 33 is systematically larger along the minor axis, and lower along the major axis. Isotropy is only possible if asymmetric motions are considered. Fourier transforms of the H I velocity dispersions reveal a bisymmetric mode which is mostly stronger than other asymmetric motions and aligned with the minor axis of the galaxy. Within the anisotropic and axisymmetric velocity model, the stronger bisymmetry is explained by a radial component that is larger than the azimuthal component of the ellipsoid of random motions, thus by gaseous orbits that are dominantly radial. The azimuthal anisotropy parameter is not strongly dependent on the choice of the vertical dispersion. The velocity anisotropy parameter of the molecular clouds is observed highly scattered. <BR /> Conclusions: Perturbations such as HI spiral-like arms could be at the origin of the gas velocity anisotropy in M 33. Further work is necessary to assess whether anisotropic velocity ellispsoids can also be invoked to explain the asymmetric gas random motions of other galaxies.< Réduire
Mots clés en anglais
galaxies: fundamental parameters
galaxies: kinematics and dynamics
galaxies: spiral
galaxies: individual: Messier 33 (NGC 598
Triangulum)
Astrophysics - Astrophysics of Galaxies
Project ANR
PSI - ANR-16-IDEX-0008
Origine
Importé de halUnités de recherche