Monitoring of the temporal evolution of water vapor in the stratosphere of Jupiter with the Odin space telescope between 2002 and 2019
BIVER, Nicolas
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
BERMUDEZ-DIAZ, K.
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
LELLOUCH, Emmanuel
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
MORENO, Raphaël
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
FOUCHET, Thierry
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
HARTOGH, Paul
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
LECACHEUX, Alain
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA]
Pôle Planétologie du LESIA
HJALMARSON, Åke
Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92, Onsala, Sweden
< Réduire
Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92, Onsala, Sweden
Langue
en
Communication dans un congrès
Ce document a été publié dans
European Planetary Science Congress Abstracts, European Planetary Science Congress Abstracts, European Planetary Science Congress, 2020-09-21, Online. 2020p. EPSC2020-87
Résumé en anglais
In July 1994, comet Shoemaker-Levy 9 collided with Jupiter. This has introduced new chemical species into Jupiter"s atmosphere, notably H2O. We observed the disk-averaged emission H2O in Jupiter"s stratosphere ...Lire la suite >
In July 1994, comet Shoemaker-Levy 9 collided with Jupiter. This has introduced new chemical species into Jupiter"s atmosphere, notably H2O. We observed the disk-averaged emission H2O in Jupiter"s stratosphere at 556.936 GHz between 2002 and 2019 with the Odin space telescope with the initial goal of better constraining vertical eddy mixing (Kzz) in the layers probed by our observations (0.2-5 mbar). The Odin observations show a decrease of about 40% of the line emission from 2002 to 2019. We analyzed these observations by combining a 1D photochemical model with a radiative transfer model to constrain the vertical eddy diffusion Kzz in the stratosphere of Jupiter. We were able to reproduce this decrease by modifying a well-established Kzz profile, in the 0.2 mbar to 5 mbar pressure range. However, the Kzz obtained is incompatible with observations of the main hydrocarbons. We found that even if we increase locally the initial abundances of H2O and CO at impact, the photochemical conversion of H2O and CO to CO2 does not allow us to find the observed decrease of the H2O emission line over time, suggesting that there is another loss mechanism. We propose that auroral chemistry, not accounted for in our model, as a promising candidate to explain the loss of H2O seen by Odin. Modeling the temporal evolution of the chemical species deposited by comet SL9 in the atmosphere of Jupiter with a 2D photochemical model would be the next step in this study.< Réduire
Origine
Importé de halUnités de recherche