Mechanism of strength reduction along the graphenization pathway
FARBOS, Baptiste
Laboratoire des Composites Thermostructuraux [LCTS]
Laboratoire de l'intégration, du matériau au système [IMS]
See more >
Laboratoire des Composites Thermostructuraux [LCTS]
Laboratoire de l'intégration, du matériau au système [IMS]
FARBOS, Baptiste
Laboratoire des Composites Thermostructuraux [LCTS]
Laboratoire de l'intégration, du matériau au système [IMS]
Laboratoire des Composites Thermostructuraux [LCTS]
Laboratoire de l'intégration, du matériau au système [IMS]
LEYSSALE, Jean-Marc
Laboratoire des Composites Thermostructuraux [LCTS]
Institut des Sciences Moléculaires [ISM]
< Reduce
Laboratoire des Composites Thermostructuraux [LCTS]
Institut des Sciences Moléculaires [ISM]
Language
EN
Article de revue
This item was published in
Science Advances. 2015-11-01, vol. 1, n° 10, p. e1501009-e1501009
English Abstract
Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline ...Read more >
Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline graphene models of increasing thermodynamic stability, as obtained from a long molecular dynamics simulation at an elevated temperature. All of the models show the typical and well-documented brittle fracture behavior of polycrystalline graphene; however, a clear decrease in all fracture properties is observed with increasing annealing time. The remarkably high fracture properties obtained for the most disordered (less annealed) structures arise from the formation of many nonpropagating prefracture cracks, significantly retarding failure. The stability of these reversible cracks is due to the nonlocal character of load transfer after a bond rupture in very disordered systems. It results in an insufficient strain level on neighboring bonds to promote fracture propagation. Although polycrystallinity seems to be an unavoidable feature of chemically synthesized graphenes, these results suggest that targeting highly disordered states might be a convenient way to obtain improved mechanical properties.Read less <
English Keywords
polycrystalline graphene
strength
fracture
molecular dynamics
thermal annealing
grain boundaries
Link to research data