Structural heterogeneity in microcrystalline ubiquitin studied by solid-state NMR
Langue
en
Article de revue
Ce document a été publié dans
Protein Sci. 2015, vol. 24, p. 592-598
Résumé en anglais
By applying [1-13 C]- and [2-13 C]-glucose labeling schemes to the folded globular protein ubiquitin, a strong reduction of spectral crowding and increase in resolution in solid-state NMR (ssNMR) spectra could be achieved. ...Lire la suite >
By applying [1-13 C]- and [2-13 C]-glucose labeling schemes to the folded globular protein ubiquitin, a strong reduction of spectral crowding and increase in resolution in solid-state NMR (ssNMR) spectra could be achieved. This allowed spectral resonance assignment in a straightforward manner and the collection of a wealth of long-range distance information. A high precision solid-state NMR structure of microcrystalline ubiquitin was calculated with a backbone rmsd of 1.57 to the X-ray structure and 1.32 A to the solution NMR structure. Interestingly, we can resolve structural heterogeneity as the presence of three slightly different conformations. Structural heterogeneity is most significant for the loop regions beta1-beta2 but also for beta-strands beta1, beta2, beta3 and beta5 as well as for the loop connecting alpha1 and beta3. This structural polymorphism observed in the solid-state NMR spectra coincides with regions that showed dynamics in solution NMR experiments on different timescales. This article is protected by copyright. All rights reserved.< Réduire
Unités de recherche