Synthetic ligands of death receptor 5 display a cell-selective agonistic effect at different oligomerization levels
Langue
en
Article de revue
Ce document a été publié dans
Oncotarget. 2016, vol. 7, n° 40, p. 64942-64956
Résumé en anglais
DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL ...Lire la suite >
DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL (TNF related apoptosis-inducing ligand). Therapies based on soluble recombinant TRAIL or agonist antibodies directed against one of the receptors are currently under clinical trials. However, TRAIL-R positive tumor cells are frequently resistant to TRAIL induced apoptosis. The precise mechanisms of this resistance are still not entirely understood. We have previously reported on synthetic peptides that bind to DR5 (TRAILmim/DR5) and induce tumor cell apoptosis in vitro and in vivo. Here, we showed that while hexameric soluble TRAIL is able to efficiently kill the DR5 positive lymphoma Jurkat or the carcinoma HCT116, these cells are resistant to apoptosis induced by the divalent form of TRAILmim/DR5 and are poorly sensitive to apoptosis induced by an anti-DR5 agonist monoclonal antibody. This resistance can be restored by the cross-linking of anti-DR5 agonist antibody but not by the cross-linking of the divalent form of TRAILmim/DR5. Interestingly, the divalent form of TRAILmim/DR5 that induced apoptosis of DR5 positive BJAB cells, acts as an inhibitor of TRAIL-induced apoptosis on JurkR5 observed when treated with divalent form of TRAILmim/DR5 couat and HCT116 cells. The rapid internalization of Dld explain the antagonist activity of the ligand on Jurkat and HCT116 cells but also highlights the independence of the mechanisms responsible for internalization and activation when triggering the DR5 apoptotic cascade.< Réduire
Unités de recherche