Show simple item record

hal.structure.identifierDepartment of Earth and Planetary Sciences [Kobe]
dc.contributor.authorAIKAWA, Yuri
hal.structure.identifierLaboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
hal.structure.identifierDepartment of Physics
hal.structure.identifierDepartment of Physics, The Ohio State University
hal.structure.identifierObservatoire aquitain des sciences de l'univers [OASU]
hal.structure.identifierDepartment of Physics [OSU]
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierMax-Planck-Institut für Radioastronomie [MPIFR]
dc.contributor.authorGARROD, Robin T.
hal.structure.identifierDepartment of Physics
hal.structure.identifierDepartment of Physics [OSU]
hal.structure.identifierOhio State University [Columbus] [OSU]
hal.structure.identifierDepartments of Astronomy and Chemistry, The Ohio State University
hal.structure.identifierDepartments of Astronomy and Chemistry
hal.structure.identifierDepartment of Physics [OHIO STATE UNIVERSITY]
dc.contributor.authorHERBST, Eric
dc.date.issued2008
dc.identifier.issn0004-637X
dc.description.abstractEnWe investigate molecular evolution in a star-forming core that is initially a hydrostatic starless core and collapses to form a low-mass protostar. The results of a one-dimensional radiation-hydrodynamics calculation are adopted as a physical model of the core. We first derive radii at which CO and large organic species sublimate. CO sublimation in the central region starts shortly before the formation of the first hydrostatic core. When the protostar is born, the CO sublimation radius extends to 100 AU, and the region inside $\lesssim 10$ AU is hotter than 100 K, at which some large organic species evaporate. We calculate the temporal variation of physical parameters in infalling shells, in which the molecular evolution is solved using an updated gas-grain chemical model to derive the spatial distribution of molecules in a protostellar core. The shells pass through the warm region of $10 -100$ K in several $\times$ $10^4$ yr, and fall into the central star $\sim 100$ yr after they enter the region where $T \gtrsim 100$ K. We find that large organic species are formed mainly via grain-surface reactions at temperatures of $20 -40$ K and then desorbed into the gas-phase at their sublimation temperatures. Carbon-chain species can be formed by a combination of gas-phase reactions and grain-surface reactions following the sublimation of CH$_4$. Our model also predicts that CO$_2$ is more abundant in isolated cores, while gas-phase large organic species are more abundant in cores embedded in ambient clouds.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enstars: formation — ISM: molecules — ISM: clouds — ISM: individual (IRAS 16293-2422
dc.subject.enL1527)
dc.title.enMolecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores
dc.typeArticle de revue
dc.identifier.doi10.1086/524096
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]
dc.identifier.arxiv0710.0712
bordeaux.journalThe Astrophysical Journal
bordeaux.page984-996
bordeaux.volume674
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00257807
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00257807v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2008&rft.volume=674&rft.issue=2&rft.spage=984-996&rft.epage=984-996&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=AIKAWA,%20Yuri&WAKELAM,%20Valentine&GARROD,%20Robin%20T.&HERBST,%20Eric&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record