Show simple item record

dc.contributor.authorSPIEGEL, David S.
hal.structure.identifierObservatoire aquitain des sciences de l'univers [OASU]
hal.structure.identifierLaboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorRAYMOND, Sean N.
dc.contributor.authorDRESSING, Courtney D.
dc.contributor.authorSCHARF, Caleb A.
dc.contributor.authorMITCHELL, Jonathan L.
dc.date.created2010
dc.date.issued2010
dc.identifier.issn0004-637X
dc.description.abstractEnAlthough the Earth's orbit is never far from circular, terrestrial planets around other stars might experience substantial changes in eccentricity that could lead to climate changes, including possible "phase transitions" such as the snowball transition (or its opposite). There is evidence that Earth has gone through at least one globally frozen, "snowball" state in the last billion years, which it is thought to have exited after several million years because global ice-cover shut off the carbonate-silicate cycle, thereby allowing greenhouse gases to build up to sufficient concentration to melt the ice. Due to the positive feedback caused by the high albedo of snow and ice, susceptibility to falling into snowball states might be a generic feature of water-rich planets with the capacity to host life. This paper has two main thrusts. First, we revisit one-dimensional energy balance climate models as tools for probing possible climates of exoplanets, investigate the dimensional scaling of such models, and introduce a simple algorithm to treat the melting of the ice layer on a globally-frozen planet. We show that if a terrestrial planet undergoes Milankovitch-like oscillations of eccentricity that are of great enough magnitude, it could melt out of a snowball state. Second, we examine the kinds of variations of eccentricity that a terrestrial planet might experience due to the gravitational influence of a giant companion. We show that a giant planet on a sufficiently eccentric orbit can excite extreme eccentricity oscillations in the orbit of a habitable terrestrial planet. More generally, these two results demonstrate that the longterm habitability (and astronomical observables) of a terrestrial planet can depend on the detailed architecture of the planetary system in which it resides.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enAstrophysics
dc.subject.enEarth and Planetary Astrophysics
dc.title.enGeneralized Milankovitch Cycles and Longterm Climatic Habitability
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/721/2/1308
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1002.4877
bordeaux.journalThe Astrophysical Journal
bordeaux.page1308-1318
bordeaux.volume721
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00460509
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00460509v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2010&rft.volume=721&rft.issue=2&rft.spage=1308-1318&rft.epage=1308-1318&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=SPIEGEL,%20David%20S.&RAYMOND,%20Sean%20N.&DRESSING,%20Courtney%20D.&SCHARF,%20Caleb%20A.&MITCHELL,%20Jonathan%20L.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record