Afficher la notice abrégée

dc.contributor.authorSTRACKE, B.
dc.contributor.authorGODOLT, M.
hal.structure.identifierZentrum für Astronomie und Astrophysik [Berlin] [ZAA]
dc.contributor.authorGRENFELL, J. L.
hal.structure.identifierSSE 2012
dc.contributor.authorVON PARIS, P.
dc.contributor.authorPATZER, B.
dc.contributor.authorRAUER, H.
dc.date.created2012
dc.date.issued2012-04
dc.date.conference2012
dc.description.abstractEnThe question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.
dc.language.isoen
dc.title.enThe Inner Boundary of the Habitable Zone: Loss Processes of Liquid Water from Terrestrial Planet Surfaces
dc.typeCommunication dans un congrès
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
bordeaux.page8313
bordeaux.volume14
bordeaux.countryAT
bordeaux.conference.cityVienna
bordeaux.peerReviewedoui
hal.identifierhal-00709151
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00709151v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012-04&rft.volume=14&rft.spage=8313&rft.epage=8313&rft.au=STRACKE,%20B.&GODOLT,%20M.&GRENFELL,%20J.%20L.&VON%20PARIS,%20P.&PATZER,%20B.&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée